万方数据 摘 要 群所周知,核稠密度估计是壹种运用什分普遍的匪参数统计方法,正鉴于如此, 己 Rosenblatt 和Parzen 提出产此稠密度估计后,好多国际外面数理统计学者对此终止切磋同时得到 了好多什分拥有意思的效实。条是在删违反数据下,相依变量前言列的核稠密度估计的高视阔步天习惯的 切磋对立比较微少见,故此切磋删违反数据下核稠密度估计的高视阔步天习惯具拥有很父亲的即兴实意思。 本论文首要竭力于切磋在遂机删违反数据下核稠密度估计的高视阔步天习惯,区别得到了删违反数 据在? 混合和NA 范本下核稠密度估计的几种收敛习惯,如逐点强大相合性、不符强大相合性、 逐点相合快度、强大相合快度以及浸进正态性,进而铰行了删违反数据在孤立和其他相依境地下 的高视阔步天习惯。详细研说项节拥有: 第壹章伸见了删违反数据、核稠密度估计和混合及NA 前言列的切磋背景与选题意思以及 国际外面对相依变量下核稠密度估计及删违反数据下核稠密度估计的相合性、收敛快度及浸进正态性 等习惯的切磋,最末给出产本论文的首要切磋效实。 第二章使用 混合前言列的指数不一式等习惯,在稠密度函数 f x 和 K ? 邑满意 Lipschitz 环境下切磋了删违反数据在混合前言列下核稠密度估计的逐点强大相合性和不符强大相 合性。 第叁章使用混合前言列的指数不一式及混合前言列壹些习惯,在f x 和K ? 邑满 趾Lipschitz 环境且二阶带数f x 拥关于键词环境下切磋了删违反数据在混合前言列下核稠密度 ?2l ln n 计的逐点强大相合性快度和不符强大相合性快度 ,其快度区别为 On ? 1?l 和 n ln n ?2l On +n + 1?l 。 n 第四章使用NA 前言列的矩不一式和拥关于键词变差等习惯,切磋了删违反数据在NA 范本下核 稠密度估计的逐点强大相合性和不符强大相合性。 第五章使用了NA 前言列的中心极限理和分块规律等习惯,切磋了删违反数据在NA 样 本下核稠密度估计的浸进正态性。 bet36体育在线: 删违反数据;核稠密度估计;NA 范本;混合前言列;强大相合性;强大收敛快度; 浸进正态性 I 万方数据 Abstract As is known to all, kernel density estimation is widely used in the field of a nonparametric statistical method. Ever since Rosenblatt and Parzen put forward the density estimation, many scholars at home and abroad study the theory of probability and mathematical statistics and achieved many significant results. Under the censored data, however, the study of large sample properties of the kernel density estimation of dependent variable is relatively rare. Thus to study large sample properties of kernel density estimation in censored data is full of great theoretical significance. In this paper, I dedicate to study large sample properties of kernel density estimation in censored data. I achieve some convergence properties in ? ?mixing and NA sample kernel density estimation of censored data as point by point strong consistency, uniform strong consistency, point by point consistency speed, strong consistency speed and asymptotic normality to spread large sample properties in dependent and some other dependent case of censored data. The

News Reporter

发表评论

电子邮件地址不会被公开。 必填项已用*标注

友情链接:

365bet 凯时国际娱乐 betway ag视讯 bet36备用